

El cultivo *in vitro* como herramienta para la caracterización, conservación y multiplicación de genotipos superiores de especies halófitas peninsulares

Gregorio Barba Espín 19/01/2023

Cultivo in vitro de tejidos vegetales

Conjunto de técnicas que permiten el cultivo en condiciones asépticas de órganos, tejidos, células y protoplastos empleando medios nutritivos artificiales.

Sus aplicaciones van desde estudios básicos sobre fisiología y bioquímica, hasta la **propagación masiva o micropropagación de plantas**, la obtención de plantas libres de patógenos, la conservación de germoplasma, la producción de metabolites secundarios, la mejora genética y la ingeniería genética.

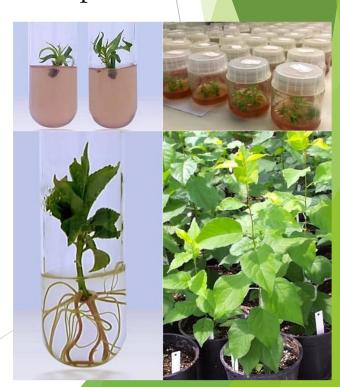
Micropropagación

Consiste en producir plantas de forma asexual a partir de porciones pequeñas, manteniendo las características genéticas de la planta madre donadora del material inicial.

Requiere un control de las condiciones ambientales y del cultivo, en condiciones asépticas (libre de contaminación microbiana o fúngica)

La micropropagación es una técnica rápida de multiplicación que permite obtener un gran número de individuos de calidad uniforme a escala comercial, a partir de un genotipo selecto.

Micropropagación: Condiciones de incubación


- Temperatura
- Luz
- Calidad
- Cantidad
- Control del fotoperiodo

Micropropagación: Etapas

- FASE 0: Preparación de la planta madre
- FASE I: Establecimiento del cultivo en condiciones de asepsia
- FASE II: Multiplicación de brotes
- FASE III: Enraizamiento
- FASE IV: Aclimatación

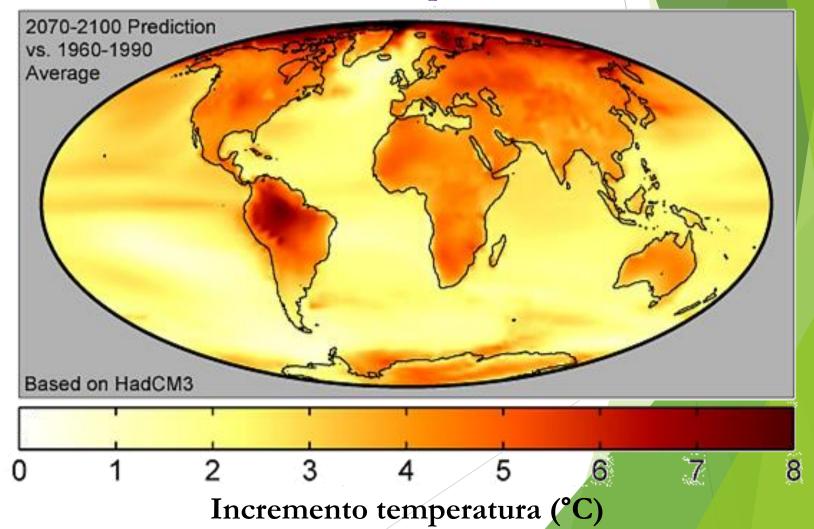
Micropropagación: Ventajas

- Multiplicación de gran número de plantas en cortos períodos de tiempo
- Producción independiente de las condiciones ambientales
- Incremento de los rendimientos debido al rejuvenecimiento y al saneamiento
- Uniformidad en las plantas producidas
- Mayor facilidad de comercialización

Cambio climático e inseguridad alimentaria

Predicción temperaturas 2070 – 2100

♦ Recursos hídricos

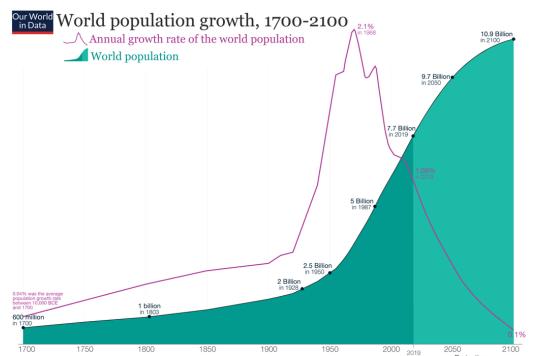

Nivel del mar

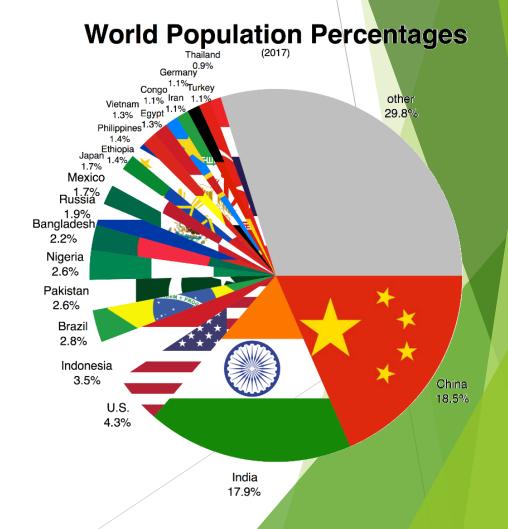
Incendios forestales

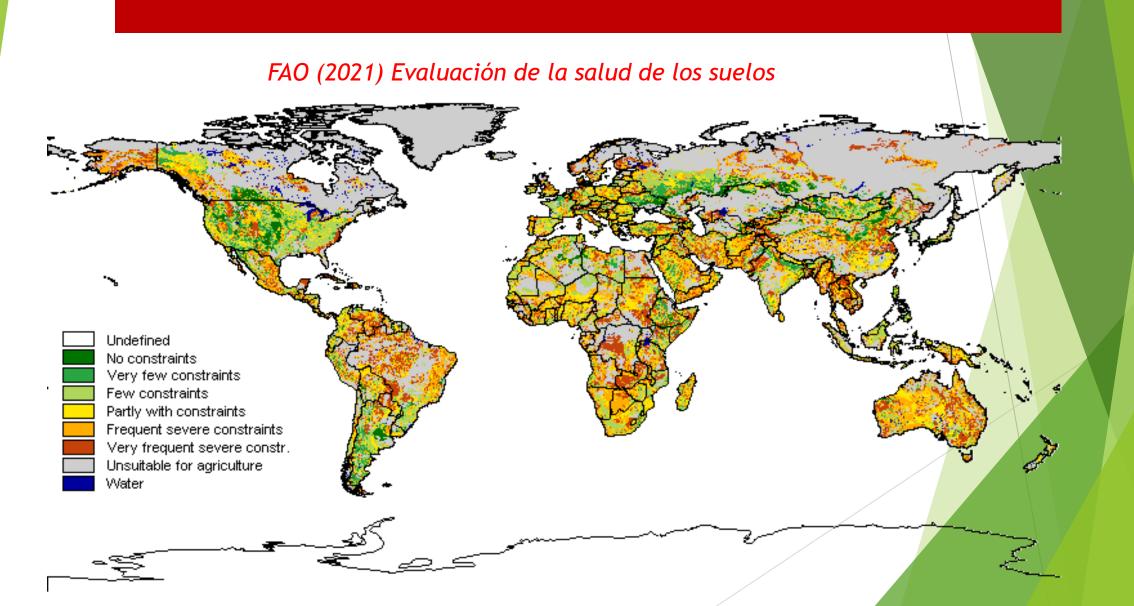
Fenómenos atmosféricos adversos

Daños ecosistemas marinos

| Capa hielo


Cambio climático e inseguridad alimentaria



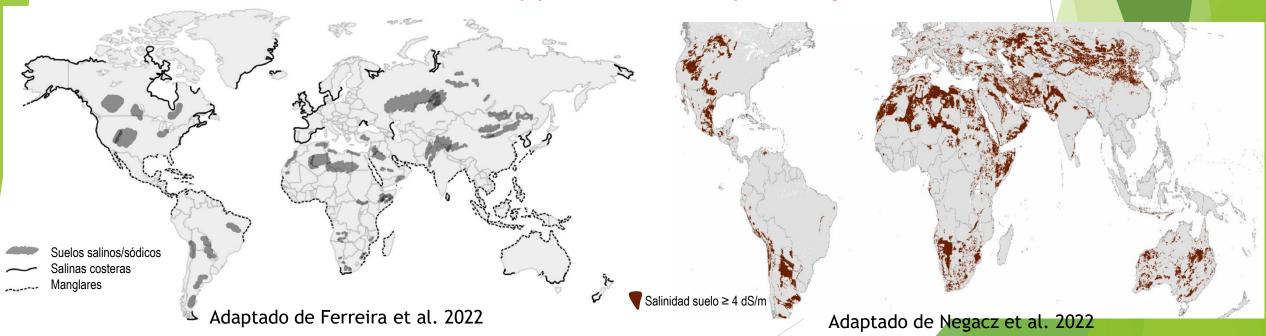


Deterioro y contaminación de suelos a nivel mundial

Deterioro y contaminación de suelos a nivel mundial: salinidad

Suelos afectados por salinidad:

- 45 millones ha (19,5%) de las 230 millones ha totales de regadío
- 32 million (2,1%) de las 1.500 milliones ha de secano


(40% de la superficie terrestre es árida: riesgo de salinización)

www.fao.org/land-water/overview/wasag

En el área mediterránea:

- Una de lás áreas más afectadas pr cambio climático
- Pérdida de biodiversidad e inseguridad alimentaria
- Monocultivos, agricultura intensiva y excesos fertilizantes

Salinidad de los suelos y potenciales áreas para la agricultura salina

Plantas halófitas: características y aplicaciones potenciales

- Alrededor 1% flora mundial (dico- y monocotiledóneas)
- Capaces de completer su ciclo de vida en medios ≥ NaCl 200 mM (20 dS/m)

- Agricultura salina
- Fitorremediación de suelos salinos
- Compuestos medicinales
- Protección hábitats costeros
- Forraje y biofuel
- Alimentación

Suaeda maritima

Salicornia europaea

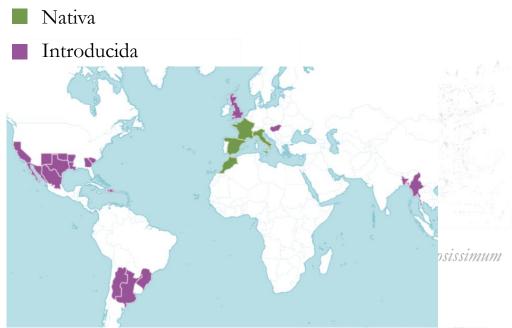
Limonium ramosissimum

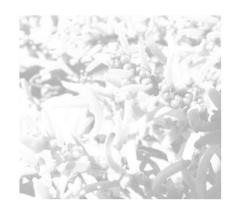
Tamarix gallica

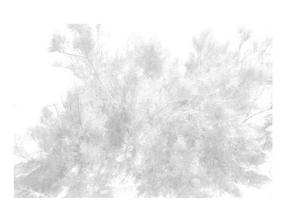
Arthrocaulon macrostachyum

Helichrysum italicum

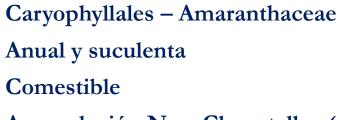
Caryophyllales – Amaranthaceae Anual y suculenta Hojas comestibles Secreción Na y Cl mediante glándulas foliares

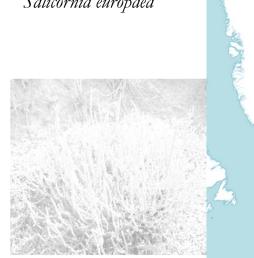


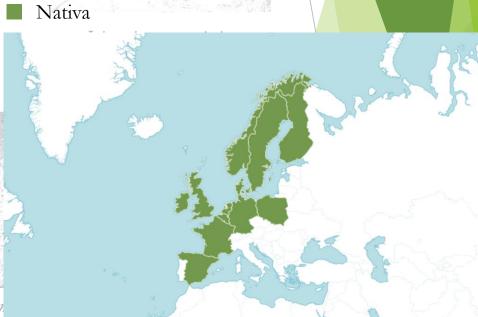

Suaeda maritima


Tamarix gallica

Caryophyllales – Tamaricaceae
Arbusto/arbóreo
Especie amenazada
Anual y suculenta
Secreción Na y Cl mediante glándulas foliares


Suaeda maritima


Tamarix gallica

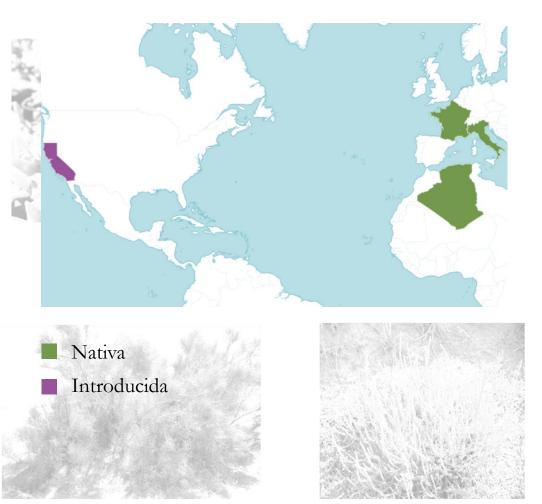

Salicornia europaea

Acumulación Na y Cl en tallos (vacuolas)

Arthrocaulon macrostachyun

Suaeda maritima

Salicornia europaea


Arthrocaulon macrostachyum

Caryophyllales – Amaranthaceae
Anual y semisuculenta
Comestible
Acumulación Na y Cl en tallos (vacuolas)

Helichrysum italicum

Tamarix gallica

Arthrocaulon macrostachyum

Limonium ramosissimum

Caryophyllales – Tamaricaceae

Perenne

Secreción Na y Cl mediante glándulas foliares

Suaeda maritima

Asterales – Asteraceae
Usado en cosmética y
alimentación (extracto flores)
Muy tolerante a sequía
Secreción Na y Cl mediante
glándulas foliares

Helichrysum italicum

Investigación en marcha en el marco de proyecto de la UE

Proyecto PRIMA (UE): Development and Optimization of Halophyte-based Farming systems in salt-affected Mediterranean Soils

CEBAS-CSIC

Centre de Biotechnologie de Borj Cédria Researchers et Technologies des Eaux Desert Research Center Université de Bretagne Occidentale INRA University of Pisa University of Algarve

Fases en la micropropagación de halófitas y herramientas analíticas

FASES

- ✓ Selección especies en diversos hábitats
- ✓ Introducción *in vitro*, micropropagación y selección de genotipos superiores en base a tolerancia a salinidad
- ✓ Enraizamiento vía organogénesis directa y posterior aclimatación de plántulas a condiciones *ex vitro*
- ✓ Comparación rendimiento en invernadero vs. germoplasma silvestre

✓ Inicio de la secuencia experimental en otras especies de halófitas

Herramientas fisiológicas y bioquímicas

Fotosíntesis

Potencial hídrico

Marcadores estrés oxidativo

Histoquímica de ROS

Enzimas antioxidantes

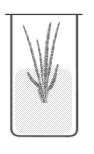
Capacidad antioxidante

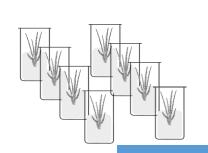
Metabolómica

Nutrientes minerales

Esquema general en el cultivo in vitro de halófitas

Muestreo en hábitat natural





Multiplicación de clones superiores, enraizamiento y aclimatación *ex vitro*

Adaptación a altas concentraciones NaCl

 $30 \text{ g/L} \sim 0.5 \text{M}$

Caracterización y uso en ensayos campo

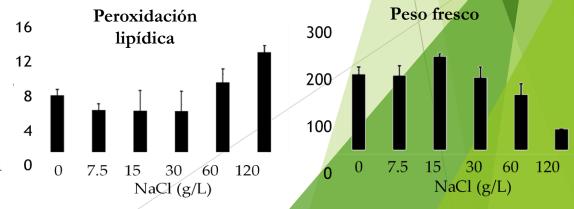
Investigación realizada con dos halófitas peninsulares:

Arthrocaulon macrostachyum y Salicornia lagascae

Muestreo en hábitat

A. macrostachyum

S. lagascae zona costa


Micropropagación y selección genotipos superiores

Crecimiento en 30 g / L NaCl

Tolerancia a NaCl

- Propagación en NaCl 30 g/L
- Medio concentrado para evitar vitrificación
- Relación auxinas/citocininas moduladas para controlar elongación/brotación
- Tasa de proliferación media ≈ 5 (brotación lateral)
- Concentraciones intermedias de NaCl (15 y 30 g/L) producen menos peroxidación lipídica (daño oxidativo) y mayor peso

Investigación realizada con dos halófitas peninsulares: Arthrocaulon macrostachyum y Salicornia lagascae

Variación de los macronutrientes de la planta a NaCl

- Mayor contenido Na⁺ y K⁺ que el material silvestre
- Na⁺ en los tallos aumentó en paralelo a la concentración de NaCl, mientras que el resto de macronutrients medidos disminuyó

	Macronutrients (g/100 g DW)						
NaCl (g/L)	Ca	K	Mg	Na	P	S	
0	0.36	2.59	0.09	2.45	0.23	0.30	
7.5	0.24	3.00	0.08	7.60	0.24	0.32	
15	0.18	2.56	0.06	8.62	0.18	0.29	
30	0.17	2.32	0.05	14.24	0.14	0.24	
60	0.16	1.89	0.04	18.00	0.11	0.20	
120	0.12	0.75	0.03	21.64	0.05	0.13	

Enraizamiento

• 80% porcentaje de enraizamiento en medio con kinetina + IBA

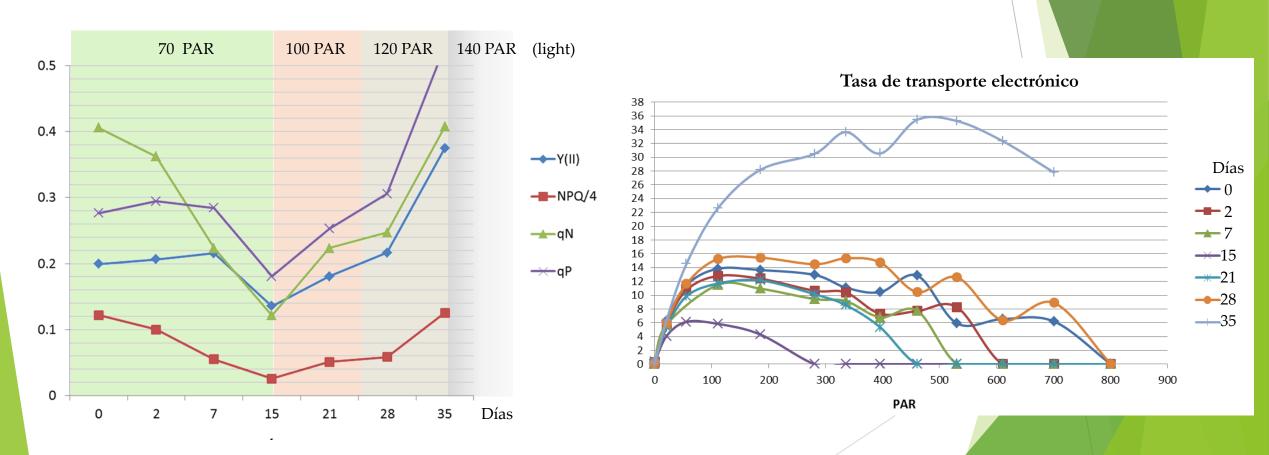
Aclimatación

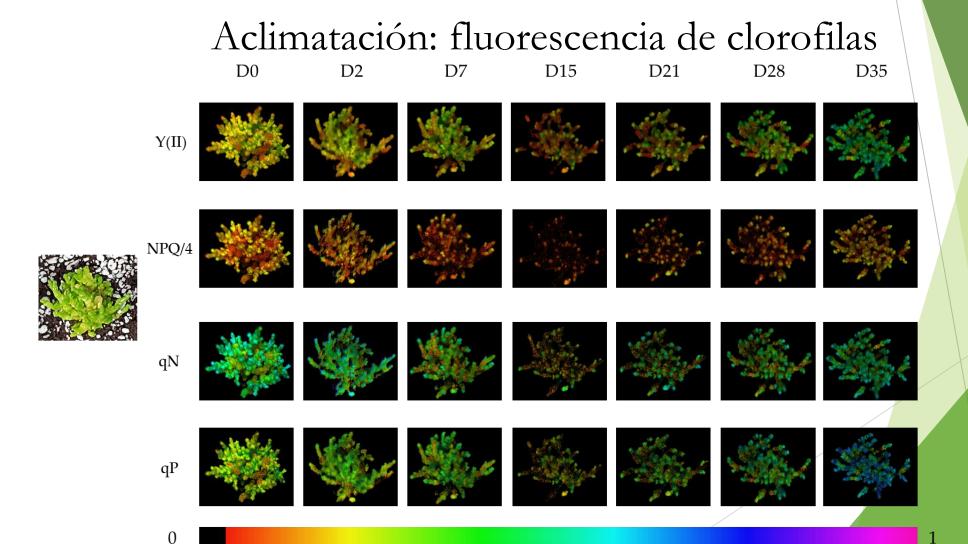
Lavado plántulas

Plantado en perlita/turba estéril

Incubación 25 °C, fotoperiodo 16h

Aclimatación


- Proceso lento
- Nueva brotación tras 4 semanas
- Mejora coloración y elongación



5 semanas

Aclimatación: fluorescencia de clorofilas

Plantas aclimatadas

0 g/L 30 g/L Irrigación NaCl

Investigación realizada con dos halófitas peninsulares: Crecimiento en invernadero

• Experimento recién iniciado para la comparación del crecimiento de los genotipos micropropagados vs. material silvestre

• Seguimiento tolerancia a salinidad mediante medidas de:

Biomasa raíz y parte aérea Nutrientes minerales Fotosíntesis Metabolismo antioxidante Análisis de suelo

Diagrama temporal actividades por especie de halófita

Principales tareas	AÑO 1	AÑO 2	
Fase 1. Recolección material			
Germoplasma diversas localizaciones			
Evaluación germinación			
Análisis mineral suelo y planta			
Descripción botánica y taxonómica y registro			
Fase 2. Introducción in vitro y multiplicación			
Esterilización tallos, hojas o semillas			
Multiplicaciñon in vitro			
Selección genotipos superiores			
Fase 3. Rizogénesis y aclimatación ex vitro			
Rizogénesis via organogénesis directa			
Aclimatación			
Fotosíntesis y peroxidación lipídica			

Diagrama temporal actividades por especie de halófita

Principales tareas	AÑO 3	AÑO 4	AÑO 5
Fase 4. Cultivo en invernadero y evaluación			
Co-cultivo clones / germoplasma silvestre			
Seguimiento suelo			
Análisis fisiológico y bioquímico			
Fase 5. Valorización halófita			
Análisis metabolómico			
Capacidad antioxidante			

El potencial de las halófitas de un vistazo

Conservación ex situ

Expansión impacto del proyecto

Diseminación

Uso agrícola

Conservación in situ

Gracias por su atención

Dr. José A. Hernández

Dr. Pedro Díaz

Dr. Abel Piqueras

Carmen Jurado

Ghofrane Verónica Atrous

Becerra

